

# **Factorising quadratics**

mc-factorisingquadratics-2009-1

You will have seen before that expressions like (x + 2)(x + 3) can be expanded to give the quadratic expression  $x^2 + 5x + 6$ . Like many processes in mathematics, it is useful to be able to go the other way. That is, starting with the quadratic expression  $x^2 + 5x + 6$ , can we carry out a process which will result in the form (x + 2)(x + 3)? This process is called **factorising the quadratic expression**. This leaflet describes this process. Special cases known as **complete squares** and **the difference of two squares** are dealt with on separate leaflets.

# **Factorising quadratics**

To learn how to factorise let us study again the previous example when the brackets were multiplied out from (x + 2)(x + 3) to give  $x^2 + 5x + 6$ .

$$(x+2)(x+3) = x^2 + 3x + 2x + 6 = x^2 + 5x + 6$$

Clearly the number 6 in the final answer comes from *multiplying* the numbers 2 and 3 in the brackets. This is an important observation. The term 5x comes from *adding* the terms 3x and 2x.

So, if we were to begin with  $x^2 + 5x + 6$  and we were going to reverse the process we need to look for two numbers which add to give 5 and multiply to give 6. What are these numbers ? Well, we know that they are 3 and 2, and you will learn with practice to find these simply by inspection. We can set the calculation out as follows. Start with a pair of empty brackets.

 $\begin{array}{rcl} x^2 + 5x + 6 &=& ( & )( & ) & \text{insert an } x \text{ in each} \\ &=& (x & )(x & ) & \text{these will multiply to give the required } x^2 \\ &=& (x+2)(x+3) & \text{these numbers multiply to give 6 and add to give 5} \end{array}$ 

The answer should always be checked by multiplying-out the brackets again!

### Example

Factorise the quadratic expression  $x^2 - 7x + 12$ .

Starting as before we write

$$x^2 - 7x + 12 = (x \qquad )(x \qquad )$$

and we look for two numbers which add together to give -7 and which multiply together to give 12. The two numbers we seek are -3 and -4 because

$$-3 \times -4 = 12$$
, and  $-3 + -4 = -7$ 

So

$$x^2 - 7x + 12 = (x - 3)(x - 4)$$

Once again, note that the answer can be checked by multiplying-out the brackets again. The alternative, equivalent form (x - 4)(x - 3), is also correct.

www.mathcentre.ac.uk



## **Exercises**

1. Factorise the following.

a) 
$$x^2 + 8x + 15$$
 b)  $x^2 + 10x + 24$  c)  $x^2 + 9x + 8$  d)  $x^2 + 9x + 14$   
e)  $x^2 + 15x + 36$  f)  $x^2 + 2x - 3$  g)  $x^2 + 2x - 8$  h)  $x^2 + x - 20$ 

# Quadratic expressions where the coefficient of x is not 1

Let us try to factorise the expression  $3x^2 + 5x - 2$ . We write, as before,

$$3x^2 + 5x - 2 = ( )( )$$

and try, by inspection, to determine the contents of the brackets. There is no point writing (x ) because the two x terms would multiply to give  $x^2$ , and in this example we are (xlooking for  $3x^2$ . So try

$$3x^2 + 5x - 2 = (3x \qquad )(x \qquad )$$

which will certainly generate the term  $3x^2$ . The constant term -2 can be generated from the numbers -2 and 1, or alternatively -1 and 2. So, we are led to consider the following combinations

$$(3x-2)(x+1),$$
  $(3x+1)(x-2),$   $(3x-1)(x+2),$   $(3x+2)(x-1)$ 

all of which generate the correct term in  $x^2$  and the correct constant term. However, only one of these generates the correct x term, 5x. By inspection we find

$$3x^2 + 5x - 2 = (3x - 1)(x + 2)$$

## Example

Factorise  $2x^2 + 5x - 7$ .

To generate the term  $2x^2$  we can write

$$2x^2 + 5x - 7 = (2x )(x )$$

To generate the constant term -7 we need two numbers which multiply together to give -7. Recognise that to produce a negative result one factor must be positive and one must be negative. We are led to consider -7 and 1, or alternatively -1 and 7. So, we consider the following combinations

$$(2x-7)(x+1),$$
  $(2x+1)(x-7),$   $(2x-1)(x+7),$   $(2x+7)(x-1)$ 

By inspection the correct factorisation is  $2x^2 + 5x - 7 = (2x + 7)(x - 1)$ .

#### **Exercises**

2 Factorise the following.

a) 
$$2x^2 + 11x + 5$$
 b)  $3x^2 + 19x + 6$  c)  $3x^2 + 17x - 6$  d)  $6x^2 + 7x + 2$   
e)  $7x^2 - 6x - 1$  f)  $12x^2 + 7x + 1$  g)  $8x^2 + 6x + 1$  h)  $8x^2 - 6x + 1$ 

#### Answers

1. a) 
$$(x+3)(x+5)$$
 b)  $(x+4)(x+6)$  c)  $(x+1)(x+8)$  d)  $(x+2)(x+7)$   
e)  $(x+3)(x+12)$  f)  $(x+3)(x-1)$  g)  $(x+4)(x-2)$  h)  $(x+5)(x-4)$   
2. a)  $(2x+1)(x+5)$  b)  $(3x+1)(x+6)$  c)  $(3x-1)(x+6)$  d)  $(2x+1)(3x+2)$   
e)  $(7x+1)(x-1)$  f)  $(3x+1)(4x+1)$  g)  $(2x+1)(4x+1)$  h)  $(2x-1)(4x-1)$ 

www.mathcentre.ac.uk

(C) mathcentre 2009