mathcentre

Factorising quadratics

mc-factorisingquadratics-2009-1
You will have seen before that expressions like $(x+2)(x+3)$ can be expanded to give the quadratic expression $x^{2}+5 x+6$. Like many processes in mathematics, it is useful to be able to go the other way. That is, starting with the quadratic expression $x^{2}+5 x+6$, can we carry out a process which will result in the form $(x+2)(x+3)$? This process is called factorising the quadratic expression. This leaflet describes this process. Special cases known as complete squares and the difference of
two squares are dealt with on separate leaflets.

Factorising quadratics

To learn how to factorise let us study again the previous example when the brackets were multiplied out from $(x+2)(x+3)$ to give $x^{2}+5 x+6$.

\checkmark
Clearly the number 6 in the final answer comes from multiplying the numbers 2 and 3 in the brackets. This is an important observation. The term $5 x$ comes from adding the terms $3 x$ and $2 x$.

So, if we were to begin with $x^{2}+5 x+6$ and we were going to reverse the process we need to look for two numbers which add to give 5 and multiply to give 6 . What are these numbers ? Well, we know that they are 3 and 2, and you will learn with practice to find these simply by inspection. We can set the calculation out as follows. Start with a pair of empty brackets.

$$
\begin{aligned}
x^{2}+5 x+6 & =(\quad)(\quad) \quad \text { insert an } x \text { in each } \\
& =(x)(x) \text { these will multiply to give the required } x^{2} \\
& =(x+2)(x+3) \quad \text { these numbers multiply to give } 6 \text { and add to give } 5
\end{aligned}
$$

The answer should always be checked by multiplying-out the brackets again!

Example

Factorise the quadratic expression $x^{2}-7 x+12$.
Starting as before we write

$$
x^{2}-7 x+12=(x \quad)(x \quad)
$$

and we look for two numbers which add together to give -7 and which multiply together to give 12 . The two numbers we seek are -3 and -4 because

$$
-3 \times-4=12, \quad \text { and } \quad-3+-4=-7
$$

So

$$
x^{2}-7 x+12=(x-3)(x-4)
$$

Once again, note that the answer can be checked by multiplying-out the brackets again. The alternative, equivalent form $(x-4)(x-3)$, is also correct.

Exercises

1. Factorise the following.
a) $x^{2}+8 x+15$
b) $x^{2}+10 x+24$
c) $x^{2}+9 x+8$
d) $x^{2}+9 x+14$
e) $x^{2}+15 x+36$
f) $x^{2}+2 x-3$
g) $x^{2}+2 x-8$
h) $x^{2}+x-20$

Quadratic expressions where the coefficient of x is not 1

Let us try to factorise the expression $3 x^{2}+5 x-2$. We write, as before,

$$
3 x^{2}+5 x-2=(\quad)(\quad)
$$

and try, by inspection, to determine the contents of the brackets. There is no point writing $(x \quad)(x \quad)$ because the two x terms would multiply to give x^{2}, and in this example we are looking for $3 x^{2}$. So try

$$
3 x^{2}+5 x-2=(3 x \quad)(x \quad)
$$

which will certainly generate the term $3 x^{2}$. The constant term -2 can be generated from the numbers -2 and 1 , or alternatively -1 and 2 . So, we are led to consider the following combinations

$$
(3 x-2)(x+1), \quad(3 x+1)(x-2), \quad(3 x-1)(x+2), \quad(3 x+2)(x-1)
$$

all of which generate the correct term in x^{2} and the correct constant term. However, only one of these generates the correct x term, $5 x$. By inspection we find

$$
3 x^{2}+5 x-2=(3 x-1)(x+2)
$$

Example

Factorise $2 x^{2}+5 x-7$.
To generate the term $2 x^{2}$ we can write

$$
2 x^{2}+5 x-7=(2 x \quad)(x \quad)
$$

To generate the constant term -7 we need two numbers which multiply together to give -7 . Recognise that to produce a negative result one factor must be positive and one must be negative. We are led to consider -7 and 1 , or alternatively -1 and 7 . So, we consider the following combinations

$$
(2 x-7)(x+1), \quad(2 x+1)(x-7), \quad(2 x-1)(x+7), \quad(2 x+7)(x-1)
$$

By inspection the correct factorisation is $2 x^{2}+5 x-7=(2 x+7)(x-1)$.

Exercises

2 Factorise the following.
a) $2 x^{2}+11 x+5$
b) $3 x^{2}+19 x+6$
c) $3 x^{2}+17 x-6$
d) $6 x^{2}+7 x+2$
e) $7 x^{2}-6 x-1$
f) $12 x^{2}+7 x+1$
g) $8 x^{2}+6 x+1$
h) $8 x^{2}-6 x+1$

Answers

1.

a) $(x+3)(x+5)$
b) $(x+4)(x+6)$
c) $(x+1)(x+8)$
d) $(x+2)(x+7)$
e) $(x+3)(x+12)$
f) $(x+3)(x-1)$
g) $(x+4)(x-2)$
h) $(x+5)(x-4)$
2.
a) $(2 x+1)(x+5)$
b) $(3 x+1)(x+6)$
c) $(3 x-1)(x+6)$
d) $(2 x+1)(3 x+2)$
e) $(7 x+1)(x-1)$
f) $(3 x+1)(4 x+1)$
g) $(2 x+1)(4 x+1)$
h) $(2 x-1)(4 x-1)$
(c) (i) $® \underset{\text { BY }}{(1)}$

